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The random walk technique is commonly used to model diffusion in 
the environment. For a constant diffusivity K and model time-step 6t. 
the random step should be chosen from a distribution with variance 
2K6t. However, if K varies spatially, this choice of step leads to the 
accumulation of particles in regions of low diffusivity. This problem 
may be overcome either by the incorporation of an apparent advection 
velocity, or by transforming to a coordinate system in which the 
diffusivity is constant. The latter technique requires no immediate 
approximations, is applicable to any reasonable diffusivity field and is 
therefore the preferred approach. In this case, as with constant K, the 
random step should be chosen from a normal distribution, for reasons 
of both theoretical accuracy and computational efficiency. Three 
important aspects of model design are discussed: the selection of the 
random number generator, the time step and the total number of 
particles. 0 1993 Academic Press, Inc. 

1. INTRODUCTION 

Particle-tracking models have been used quite extensively 
for the simulation of the transport of passive substances 
within fluids [e.g., 111. The substance is modelled by an 
assemblage of discrete particles, which may be subjected to 
advection, diffusion, and decay by a variety of relatively 
simple deterministic or stochastic processes. For example, 
advection is simulated by a translation of each particle with 
a velocity derived from the local fluid velocity field. Diffu- 
sion is generally simulated using the random walk tech- 
nique, where each particle position is periodically perturbed 
by a random vector, derived from a defined distribution 
function, P. The spatial size (specifically, the variance) of P 
is derived from the required effective diffusion coefficient(s). 
To simulate a spatially constant diffusion coefficient, K, the 
variance, or second moment, N: , of P is given by 

N; = 2K 6t, (1) 

where iit is the time step (see, for example, [ 111 or Eq. (1 1 ), 
later) and the asterisk is used specifically to indicate 
moments of P, rather than those of a general concentration 

distribution. Decay may be modelled deterministically (e.g., 
by assigning to each particle a certain quantity of substance 
which decreases with time) or stochastically (e.g., by the 
periodic random removal of individual particles). 

Particle-tracking models have been used for the simula- 
tion of the transport of contaminants in turbulent boundary 
layers [e.g., 21, heat [e.g., 3,9], oil [e.g., 1,6,8], biological 
entities [e.g., 7, 161 and hydrodynamically active particles 
[e.g., 5, 111. 

Particle-tracking models offer advantages over linite-dif- 
ference (FD) or finite-element (FE) solutions of the partial 
differential transport equations in the following two respects. 
First, they afford simpler and more accurate predictions of 
advection, which can only be modelled well by FD or FE 
methods if relatively complicated numerical schemes are 
used [e.g., 131. If the velocity field can be locally described 
by an analytic function, then particles may be advected 
exactly through that field by simple integration. Second, 
for problems where the substance does not occupy the 
whole model domain, particle-tracking models may be 
significantly more computationally efficient than their FD 
or FE counterparts [9]. However, it should be noted that, 
in common with other stochastic methods, the accuracy of 
particle-tracking models which use random processes varies 
as the square root of the computational effort, whereas 
the accuracy of deterministic models generally varies in 
proportion to the computational effort. 

In the presence of turbulence, the effective diffusivity is 
generally not a constant and varies spatially due to the 
presence of boundaries (e.g., “log layer” effects) and due 
to ambient density stratification, both factors tending to 
inhibit mixing. Transport models of turbulent systems 
should therefore be capable of simulating a spatially 
variable diffusion coefficient. The simplest solution to this 
problem (henceforth termed the “naive” method) would 
appear to be to define a spatially variable variance, 
equivalent to the value of Nf given by Eq. (1). However, 
it is easily found in practice that this leads to an apparent 
advection in directions of decreasing diffusivity and hence a 
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concentration of particles in regions of low diffusivity. This 
paper indicates why this should be so and presents two ways 
of overcoming the problem. 

2. THE MOMENTS OF THE CONCENTRATION 
DISTRIBUTION 

At the beginning of a time step of a random walk model, 
each particle represents a delta function of concentration, 
being a finite quantity of substance (q), occupying an 
inlinitesimally small space. After one time step, the particle 
has been stochastically “spread” since its new position is 
defined by a probability distribution, P, spanning a finite 
volume of space; P is equal to the new concentration dis- 
tribution for each particle, normalised by q. This process 
may be conveniently described in terms of the moments of 
the concentration distribution, with respect to the particle 
position at the beginning of the time step. For example, for 
a conservative substance, the zeroth moment (the concen- 
tration integral) remains constant. Higher moments are 
zero at the beginning of the time step; advection moves the 
centroid of the distribution, changing the first moment; 
diffusion increases the variance, or second moment. In order 
for a random walk model to accurately simulate advection 
and diffusion, the moments of P should reflect the change 
of moments as described by the transport equation. In 
this section, we ignore the effect of advection and derive 
equations describing the evolution of the moments of the 
concentration distribution. 

The forthcoming discussions will be confined to systems 
of one dimension, extension to higher dimensions being a 
straightforward exercise. The diffusion equation is: 

!g=-& Kg -(Kc’)’ ( > 
with x the spatial coordinate, t the time, c the concentration, 
and K the diffusivity. As indicated in Eq. (2), primes will be 
used to denote spatial derivatives. 

We may define the unnormalised nth moment (n > 0) of 
c about the origin as 

Mn=jm cx”dx 
-cc (3) 

and the normalised n th moment as 

N, = MJM,. (4) 

K may be expanded about the origin to yield the Taylor 
series: 

Equations (2) (multiplied by xn), (3), and (5), yield, after 
two integrations by parts and the assumptions that 
Kx”(&/Jx) --* 0 and nKxn-‘c + 0 as x + fee (i.e., that c is 
spatially limited), 

where the sum is only performed for m + n - 2 2 0. 
From (6), it is clear that, for IZ = 0, 

$l!fo=O, yielding MO = a constant, 

so that 

$,+ ‘f n(m+n-m~‘K(m)(o)N,+~-~. (8) 
ITI=0 

(6) 

(7) 

We will now consider two cases, K’“” = 0 for m 2 1 (K is 
constant) and KC”) = 0 for m 2 2 (K varies linearly with x): 

(a) K is a constant, so KC”’ = 0 for m 2 1; Eq. (8) 
yields 

so that 

;N,=O, yielding N, = a constant (10) 

and 

$N,=2K, yielding N2 = 2Kt, (11) 

if N, = 0 at t = 0. 
Equations (10) and (11) indicate that the centroid of the 

distribution remains stationary while the variance increases 
at a rate equal to twice the diffusivity, K. 

For the particular case where c has constant shape, in the 
sense that c can be described by a single (time-varying) 
length scale L, with N,, = A, L” (where A, are dimensionless 
constants), Eqs. (9) and (11) yield N, = (n - 1) N, N, _ 2. 
This is the relationship satisfied by the moments of a normal 
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(Gaussian) distribution, with the origin of x chosen so that 
N, = 0. The relationship therefore indicates the well-known 
and important result that a spreading normal distribution is 
a fundamental solution of the diffusion equation (2), with 
constant diffusivity K. 

(b) K varies linearly with X, so Kc”‘= 0 for m > 2; 
Eq. (8) yields 

~N.=n(n-l)K(O)N,-,+n*K’N,~, 

so that 

$NI =K’, yielding N, = K’t, 

if the origin of x is chosen appropriately. 
Also 

$ N, = 2K(O) + 4K’N,, 

yielding (using Eq. (13)) 

N, = 2K( N, ) t, 

if N, = 0 at t = 0. 

(12) 

(13) 

(14) 

The second moment of the distribution of c relative to 
its centroid (to be used in Section 3) is, from Eqs. (13) 
and (14), 

N2-N:=2K(N1/2)t. (15) 

Equation (13) indicates that, in the presence of a linear 
variation of diffusivity, K, the centroid of the distribution 
(N,) moves with a velocity K’. The second moment of the 
distribution, N, relative to the origin, or N, - N: relative to 
the centroid, increases in a manner similar to Eq. (1 1 ), 
except that K must be evaluated at N, (Eq. 14)) or N,/2 
(Eq. (15)), respectively, rather than at the origin. 

3. THE RANDOM WALK TECHNIQUE AND 
THE ADDITION OF AN APPARENT 

ADVECTION VELOCITY 

The simplest random walk model moves each particle by 
an alternating sequence of “advective” and “diffusive” steps. 
The advective step may be computed from a first or higher 
order integration based on the local velocity field (e.g., 
[15]), or from analytic integration when the functional 
form of the velocity field is known (e.g., in a logarithmic 
layer). As discussed earlier, the diffusive step is generally 
implemented by adding, to the spatial position of each par- 

ticle, a random vector derived from a defined distribution 
function, P. Since the diffusion equation (2) is linear in c, it 
is helpful to consider the concentration distribution at any 
one time as being composed of a set of delta functions, each 
corresponding to one particle. P should be chosen so that its 
moments approximate those derived from the integration 
of Eq. (8) over the range t = (tl, t, +6t), with initial 
conditions N,,,( t 1) = 0 (m > 1 ), t i being the start of the time 
step, 6t. 

Section 2 implies that, for the case of constant K, P 
should ideally be a normal distribution. However, the cen- 
tral limit theorem (e.g., [ 12, p. 3513) indicates that, for any 
general form of P, the concentration field resulting from an 
initial delta function approaches a normal distribution after 
a few time steps (where a “few” will be discussed more fully 
in Section 5). Since such a distribution is completely 
described by its first and second moments, the exact form of 
P is unimportant so long as its moments satisfy Eqs. (10) 
(N: = a constant) and (11) (N: = 2K at), where the 
asterisk denotes, specifically, the moments of P rather than 
those of the total concentration, c. Commonly used forms 
of P are therefore a pair of equal delta functions (the 
well-known “drunken man’s walk” with random step 
+ (2K Bt)“*, henceforth termed the “two-step” distribution) - 
and a uniform (“top hat”) distribution, of extent 
f (6K at)“*. 

For the case of spatially varying K, we will assume that K 
is linear, so that the moments of P should be chosen to 
satisfy Eq. (12), integrated over the range t = (tl , t, + dt), 
with initial conditions N,,,(t,) = 0 (m > 1). The first moment 
should therefore satisfy (from Eq. (13)) 

N: = K’ 6t. (16) 

The second moment should satisfy (from Eqs. (14) and 
(15)) 

N; = 2K(Nf) 6t W-4 

or 

N; - (NT)* = 2K(N:/2) ht. (17b) 

The centroid of P (defined by NT) should therefore be 
advected with a velocity K’ in the direction of increasing dif- 
fusivity. It is this correction that is necessary to prevent par- 
ticles concentrating in regions of low diffusivity. The correct 
relationship for the second moment depends on the way 
in which the apparent advection velocity (K’, above) is 
applied. If the new particle position is chosen from a single 
distribution function, P, which has first and second 
moments given by Eqs. (16) and (17), respectively, then 
Eq. (17a) should be used to derive N:. However, it is 
generally simpler to move the particle in two steps, one 
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advective and the other diffusive. In this case the advective 
step should consist of a simple translation of the particle 
with a velocity K’ (which itself increases the variance by 
(N:)2 = (K’ &)2), and the diffusive step should involve 
a random walk using a distribution with variance 
Nf - (NF)2, given by Eq. (17b). 

For moments higher than the second, and any general 
field of K, it is evident that the correct form of P is not a nor- 
mal distribution. This is clear from the simple example of a 
field which includes points at which K approaches zero. 
A diffusing patch must always be bounded by such points 
and hence cannot be normal in form. We must therefore 
invoke the central limit theorem and assume that moments 
higher than the second are unimportant. 

The requirement for an apparent advection velocity 
presents a paradox. Expansion of Eq. (2) yields - 

$ = Kc” + Kc’. (18) 

(i) (ii) 

It could be considered (erroneously) that, if term (ii) were 
omitted from Eq. (18) the solution would be that simulated 
by using the “naive” method of Section 1, with a local 
diffusivity given by Eq. (1). It would then appear that term 
(ii) represents the adjustment required to yield the correct 
solution. However, term (ii) is equivalent to an advection 
velocity of -K’, in the direction of decreasing dif- 
fusivity-i.e., in the opposite direction to the required 
velocity determined above. The paradox may be resolved by 
considering the moments of the concentration distribution 
described by 

ac 
z = Kc”, 

where K varies linearly in space. 
A similar analysis to that described in Section 2 yields 

1 N, = 2K’, yielding N, = 2K’t, 

if the origin of x is chosen appropriately, indicating that the 
centroid moves twice asfast, in the case of Eq. (19), as in the 
case of the “correct” diffusion equation (2). The apparent 
advection velocity contained in term (ii) in Eq. (18) is 
simply the difference between the centroid velocity, K’, for 
Eq. (2) and the centroid velocity, 2K’, for Eq. (19). The 
paradox is hence resolved by appreciating that Eq. (19) 
with spatially variable K, is not the equation that is 
simulated by the “naive” method of Section 1. 

4. A TRANSFORMATION THAT YIELDS 
A CONSTANT DIFFUSIVITY 

Equation (17) indicates one way of implementing a ran- 
dom walk model with spatially variable diffusivity. An alter- 
native method is to remap the spatial coordinate to yield a 
transport equation with constant diffusivity. The transfor- 
mation is shown here for the case in which the diffusivity 
varies in only one dimension; extension of the mapping to 
cover variability in the other dimensions is not simple. This 
present technique is therefore suitable for the modelling (in 
one, two, or three dimensions) of boundary layers in which 
the diffusivity varies in only one direction. Including the 
effect of advection, the transport equation is 

(21) 

where u is an advection velocity and both K and u may vary 
with x. 

We now define a new coordinate system, X(x), and 
a transformed concentration, y. Mass conservation on 
transformation is ensured if 

y dX=cdx. 

Equation (21) becomes 

(22) 

%J a 
at== I 2 aY K(X) E+Kx”y-uX’y > , (23) 

where primes continue to indicate differentiation with 
respect to x. 

In order to obtain a constant diffusivity in the trans- 
formed system we set K(x’)2 = 1 (the value of the constant 
on the right-hand side being unimportant). Hence, the 
transformed coordinate is given by 

so that Eq. (23) becomes 

(24) 

(25) 

and y is given by 

y = cK’12. (26) 

The diffusive term in Eq. (25) may be solved by a random 
walk technique with constant (unit) diffusivity. The trans- 
formation yields an apparent advection velocity which is 
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K’l(2K”‘) in X-space (equivalent to K/2 in x-space or half 
the apparent velocity that was shown, in Section 3, to be 
required if the transport equation is solved in x-space). The 
advection velocity, U, is scaled by K- ‘I2 in X-space. 

The physical meaning of the above transformation may 
be understood by considering that, after an elapsed time at, 
an initially infinitesimally small patch reaches a size, given 
by Eq. (17), of 

N;” = (2K St)“‘, (27) 

where the asterisk has been dropped to indicate the 
properties of an actual concentration distribution. The 
transformation scales the spatial coordinate by K-l”, 
which is proportional to the above patch size, thereby 
effectively yielding a spatially constant diffusivity. 

We will illustrate the technique with two examples in 
which the diffusivity varies linearly in space. The first case 
involves a continuous source and the second an instan- 
taneous release, both at the “left hand” boundary (x = 0). 
For both examples, there are simple analytic solutions 
within the semi-infinite domain x = (0, co). The numerical 
domain is limited to x = (0,4). The examples, in which the 
numerical predictions are compared with analytic solutions, 
are as follows: 

(a) Continuous release. We assume that K= ax + b, 
where a and b are constants, u = 0, and the substance flux in 
the positive x-direction is F, so that 

ac 
(ax+b)-+F=O. ax (28) 

which, on integration, becomes 

x; = x: + 2(t2 - tl), (32) 

where the subscripts, 1 and 2, denote the beginning and the 
end of the advective step, respectively. 

Figure 1 shows a simulated solution, run to 
approximately steady state from initial conditions of zero 
concentration throughout the model. Particles were added 
at the left-hand boundary (x=0) and removed if they 
reached the right-hand boundary (x = 4). P was chosen to 
be a top hat distribution. The following values were used: 

a= 1, b=O.l, 
F= 500 particles per unit time, 
elapsed time = 100, 
time step = 0.1. 

The particle concentration was computed by dividing the 
model into adjacent cells of equal size and counting the 
numbers of particles in each cell. The model contained 40 
cells. The constant in Eq. (29) was evaluated by equating 
the analytic and simulated concentrations at the right-hand 
side of the model (the centre of the extreme right-hand cell, 
at approximately x = 4). If the expected particle concentra- 
tion in cell i, of volume Vi, is (c,), then the expected 
number of particles in the cell is Vi ( ci). The actual particle 
concentration in the cell follows a binomial distribution of 
standard deviation, si, given by 

si= Cci> (&mf)1’29 (33) 

The steady-state solution to Eq. (28) (which requires that F 
where N is the total number of particles in the model (e.g., 

is constant) is 
2500 , 

(29) 2ooo - 

In the random walk technique, the transformation is, from 
m. (24), 

x= 2(ax + b)“’ 
a ’ (30) 

where the constant of integration has been arbitrarily 5oo 
chosen to be zero. 

The apparent advection velocity (K’/(2K112) as defined 
by Eq. (25)) may be integrated analytically. Neglecting the 0 1 2 3 4 

stochastic diffusive step, a particle trajectory is given by 
x 

FIG. 1. The simulated and analytic concentration due to a continuous 

dX a 1 release. The dashed curves indicate one standard deviation on either side 
-= 

2(ax + b)“’ =x (31) of the analytic solution. The continuous curve indicates the simulated 
dt concentration. 
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[9]). The dashed curves of Fig. 1 indicate one standard 
deviation of the expected concentration distribution on 
either side of the analytic solution. 

The continuous curve indicates the simulated concentra- 
tions. It is evident that these are generally within one 
standard deviation of the analytic solution with only three 
values (7.5% of the total) falling outside two standard 
deviations (the expected number being approximately 1.8 or 
4.6 % of the total), indicating satisfactory agreement. 

(b) Instantaneous release. As in the previous example, 
we assume that K = ax + b, where a and b are constants, 
and u = 0. A time-dependent solution of Eq. (2), for an 
instantaneous release at x = -b/a and t = 0, is 

c=sexp( -+), _ 

where Q is the total number of particles in the range 
x = -b/a to x = co. The diffusive flux is zero at x = -b/a, 
where the diffusivity is zero. 

In the random walk technique, the transformation is 
given by Eq. (30), and the advection step was evaluated 
analytically using Eq. (32). It is clear from Eqs. (25) and 
(34) that the numerical solution cannot include the point 
x = - b/a, where K is zero. A zero flux (reflective) condition 
was hence imposed at the “left-hand” boundary (x = 0) and 
b/a was chosen to be sufficiently small (0.001) to obtain a 
good approximation to the analytic solution. At the “right- 
hand” boundary (x = 4), a further zero flux condition was 
imposed. This latter condition (which is strictly incom- 
patible with the solution given by Eq. (34)) had little effect 
on the numerical simulation, which was terminated after 
only a few particles had reached this boundary. 

1400 , 

1200 

6 
‘3 800 
5 
2600 

8 

0 1 2 3 4 
x 

FIG. 2. The simulated and analytic concentration due to an instan- 
taneous release. The dashed curves indicate one standard deviation on 
either side of the analytic solution. The continuous curve indicates the 
simulated concentration. 

Figure 2 shows a simulated solution in which Q particles 
were initially released at the left-hand boundary (x = 0). P 
was chosen to be a top hat distribution. 

The following values were used: 

a = 1, b = 0.001, 
Q = 1000 particles, 
elapsed time = 0.75, 
time step = 0.01. 

The concentration was computed as in the previous example, 
and, again, the model contained 40 cells. The dashed curves 
indicate one standard deviation of the expected concentra- 
tion distribution (as calculated in the previous example) on 
either side of the analytic solution. 

The continuous curve indicates the simulated concentra- 
tions. Again, there is good agreement, with the simulated 
concentration being generally within one standard devia- 
tion of the analytic solution with only one value (2.5% 
of the total) falling outside two standard deviations (the 
expected number being approximately 1.8 or 4.6% of the 
total). 

5. THE CHOICE OF DISTRIBUTION 
PRESCRIBING THE RANDOM STEP 

As was discussed in Sections 2 and 3, for the case of con- 
stant diffusivity K (or of the constant transformed diffusivity 
of Section 4), P should ideally be a normal distribution. 
However, the central limit theorem ensures that, after a cer- 
tain number, R, of time steps, tit, the exact form of P is 
unimportant, so long as the first and second moments (N: 
and Nf ) satisfy certain relationships (Eqs. (10) and (11)). 
as discussed in Section 3. Commonly used forms are hence 
the two-step and the top hat distributions. However, it 
should be noted that this does not mean simply (as is often 
assumed) that the predictions are satisfactory after a time 
R 6t from the model start time, but rather that the model 
can only accurately resolve time scales greater than or equal 
to R 6t, instead of 6t. The minimum resolvable time scale 
has therefore been increased by a factor, R. The use of a 
simple two-step or top hat distribution is therefore only 
reasonable if it involves a saving in computation time by at 
least a factor of R, relative to that required by a normal 
distribution (the “correct” form for the case of constant 
diffusivity, or if the transformation of Section 4 is used). 
We here estimate the value of R and the computational 
overhead involved in the use of a normal distribution, 
rather than the simple two-step or top hat forms. 

The implementation of a single time step of a random 
walk model, with constant diffusivity and hence a constant 
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distribution function, P(6x, st), is equivalent to the 
convolution of the concentration, c, by P (e.g., [4, p. 391): 

ci+ltx)=J”~m ci(x+6x) P(6x, 61) d6x, (35) 

where the subscript i denotes the time level i 6t. The central 
limit theorem indicates that, if the convolution kernel, P, 
is applied R times to a delta function, the result is 
approximately a normal distribution, G(x), with a variance 
equal to RN,, where N2 is the variance of P. The difference 
between the resultant and a normal distribution may be 
described by the normalised standard deviation, sR, given 
by 

sR = ko (CR(X) - G(X))’ dx 1’2 
sZrn G2(x) dx > ’ (36) 

where c0 is a delta function. The value of sR may therefore 
be determined, given a required level of agreement, using 
Eq. (36). 

Equation (36) was evaluated numerically for both two- 
step and top hat distributions and for a range of R. The 
results are summarised in Table I. It was found that agree- 
ment with a normal distribution at about the 10% level 
requires R values of 3 and 2, for two-step and top hat 
distributions, respectively. At the 1% level, the R values 
are 21 and 13, respectively. 

The computational overhead on using a normal distribu- 
tion, instead of a two-step or top hat distribution, was 
estimated for a system-supplied random number generator 
and others described by Press et al. [14]. The subroutines 
(see Table II) were timed on a Sun Microsystems SPARC- 
station 1. The random number routines RAND, RAN, 
RANO, RANl, RAN2, and RAN3 (henceforth termed the 
“uniform” routines) return a value from a uniform distribu- 
tion in the range 0 to 1. Derivation of the required random 
step using a two-step distribution requires a single call of 
one of these routines and a conditional statement; a top 
hat distribution requires one call of the random number 
routine, one subtraction and one multiplication. The 

TABLE I 

Normalised Standard Deviation, sR, between Normal Distribu- 
tion and Distributions Formed by R Applications of Two-Step or 
Top Hat Convolutions 

R sR (two-step) sR (top hat) 

2 0.144 0.0887 
5 0.0449 0.0270 

10 0.0218 0.0132 
20 0.0108 0.00651 
50 0.00428 0.00258 

TABLE II 

Random Number Generators Used in Tests 

Name Distribution SOUPX Method Time (11s) 

RAND UnifCXlII Sun Micro- Non-linear 9.8 
sytems additive 

feedback 

RAN Uniform Ref. [ 141 Single linear 
congruential 

15.5 

RAN0 Uniform Ref. [ 143 Random shame 
of sequence 
of random 

numbers 

32.6 

RAN1 Uniform Ref. [I43 Triple linear 
congruential 

43.8 

RAN2 Uniform Ref. [14] Similar to 
RAN0 

20.9 

RAN3 Uniform Ref. 1141 Subtractive 
method, 

after [lo] 

9.2 

GASDEV Normal Ref. 1143 Transformation 23.8 (using RAND) 
of uniform 31.2 (using RAN) 

distribution 53.0 (using RANO) 
67.1 (using RANl) 
37.9 (using RANZ) 
23.0 (using RAN3) 

normal distribution algorithm (GASDEV), from [ 141) 
employs (generally) a single call of one of the above routines 
followed by a transformation to convert from a uniform to 
a normal distribution; a further multiplication yields the 
required random walk step. The time for the generation of 
a single random step in a model is therefore dominated by 
the execution time of the random number routine used to 
generate the uniform or normal variate. Timing tests of 
GASDEV, using each of the six uniform routines, has 
indicated that the overhead factor, defined by 

(Time for one call of normal algorithm) 
(Time for one call of uniform algorithm) 

is 2.0 f 0.4 (Table II). Hence it only takes about twice as 
long to generate a random number from a normal distribu- 
tion as it does from a uniform distribution. The overhead on 
generating a model step from a normal distribution, rather 
than from a two-step or top hat distribution, would involve 
a similar ratio. 

The R values of Table I indicate the ratio (typically 10) by 
which the time step may be increased when using a normal 
distribution, and since the computational overhead factor is 
only about two, we conclude that it is significantly more 
efficient to use a normal (rather than two-step or top hat) 
distribution in random walk models. 
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6. THE CHOICE OF RANDOM NUMBER GENERATOR 

Not all numerical random number generators are suitable 
for use in random walk models. The choice of a satisfactory 
random number generator should involve two main criteria, 
first that it should be computationally efficient and second 
that it should return values that are sufficiently random 
in the sense that diffusive processes may be simulated 
accurately. We will consider each of these criteria in turn. 

Table II indicates that the computation time to generate 
a random number can vary widely (over factors of 4.8 and 
2.9 for the uniform and normal distribution routines, 
respectively). Since the calculation of random numbers can 
occupy a significant portion of the total computation time 
of a random walk model (especially if processes other than 
diffusion (e.g., decay) are also modelled stochasticahy), it is 
worthwhile finding an efficient algorithm. 

RAND 

looo- 

Algorithmic random number generators never generate 
truly random numbers. Since they involve numbers con- 
taining a finite number of digits, one pattern of output 
values is exactly repeated over a finite cycle length (typically 
232 sequential values). In addition, patterns exist over 
significantly smaller “scales.” For example, the least signifi- 
cant bit of the output of some random number generators 
alternates between 0 and 1 over sequential values. Such pat- 
terns are of importance in random walk models, which typi- 
cally involve a minimum of lo3 particles and lo3 time steps 
and hence at least lo6 calls of a random number routine. 
The potential problem is illustrated by considering the case 
of the simulation of a single particle over a number of steps 
equal to the cycle length. At the end of the simulation, if the 
distribution is truly uniform, there will be exactly the same 
number of steps of +D (say) as steps of -D, so that the 
sum of all the steps will be zero and diffusion is effectively 

0 2000 4CKKl 6ooO 8OMJ 10000 
Step number 

loo0 &, 

0 200040006WO80001GfKIO 
Step number 

RAN1 
loo0 - 

800 

Pm 
+oo 

200 

0 2000 4000 6000 8000 10000 
Step number 

RAN2 

0 2000 4OCNl 6000 8000 10000 
Step number 

0 200040006000800010000 

800 

om 
$400 

200 

Step number 

RAN3 

0 20004ooo6ooo80001oooO 
Step number 

FIG. 3. Results of the tests of random number generators, Configuration A (time selected in inner program loop). The dashed lines indicate one 
standard deviation on either side of the theoretical variance. The continuous curves indicate the results of the various simulations. 
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absent over this period. In a model that utilises a sequence 
of random numbers that may even be considerably shorter 
than the cycle length, the effect of correlations is sometimes 
manifest by a patch of particles initially spreading at 
approximately the expected rate, but then shrinking in size 
at later times. A simple test of the suitability of a random 
number routine is therefore to compare the rate of increase 
of variance of a patch of modelled particles with the 
theoretical relationship (e.g., Eq. (ll), for the case of 
constant diffusivity). Any distribution function may be 
used, since the exact form of the distribution does not 
affect the rate of increase of variance and does not mask the 
performance of the underlying random number generator. 

Figures 3 and 4 show the patch variance as a function of 
time for simulations involving lo3 particles, lo4 time steps, 
no advection, K = & and 6t = 1. The simulation therefore 
involves 10’ calls of the random number generator. From 
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Step number 
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Eq. (1 ), the required distribution should have a variance 
equal to h, which is provided by a top hat distribution with 
limits ItO.5 The variance should theoretically increase at 
a rate equal to h per time step. The random number 
generators tested were those listed in Table II. 

The estimated patch variance is given by 

where xi is the coordinate of the ith particle and there are 
n particles. The expected spread of the patch variance may 
be derived from the properties of the x2 distribution, which 
has a variance of 2n and a mean of n (n being the number 
of degrees of freedom). The ratio of the standard deviation 
of the patch variance to the mean patch variance is therefore 
(2/n)“‘. The dashed lines in Figures 3 and 4 indicate plus 
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FIG. 4. Results of the tests of random number generators, Configuration B (time selected in outer program loop). The dashed lines indicate one 
standard deviation on either side of the theoretical variance. The continuous curves indicate the results of the various simulations. 
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and minus one standard deviation from the theoretical 
variance, or 

where t is the time, or time step number. The continuous 
curves indicate the results of the various simulations. 

Figure 3 shows results for a model in which time is 
stepped forward in the inner program loop and the particles 
are selected in the outer loop. Hence the sequence of opera- 
tions (termed “configuration A”) is: 

Step forward particle (1) over duration of simulation, 
step forward particle (2) over duration of simulation, 
step forward particle (3) over duration of simulation, 
etc: * 

Figure 4 shows results for a model in which time is stepped 
forward in the outer program loop and the particles are 
selected in the inner loop. Hence the sequence of operations 
(termed “configuration B”) is: 

Step forward all particles over time step (1 ), 
step forward all particles over time step (2), 
step forward all particles over time step (3), 
etc. 

According to this test, the performance of random number 
generators can be very poor and may depend on which con- 
figuration is chosen (A or B). In particular, routines RAN, 
RANO, and RAN1 behave poorly with configuration A, 
while only RAN and RAN1 behave poorly with conligura- 
tion B. Both RAND in configuration A and RAN0 in 
configuration B produce results which differ by more than 
a standard deviation from the expected variance. 

Of the random generators tested, RAN3 is the ‘most 
computationally efficient and performs satisfactorily over 
simulations involving 10’ random numbers in either 
configuration A or B. 

7. THE CHOICES OF TIME STEP AND OF 
TOTAL NUMBER OF PARTICLES 

The optimal time step is closely related to the dominant 
length and time scales of the modelled system. In the 
transformed coordinate system, the total effective velocity 
may be defined by 

Three length scales can be defined (in the transformed 
coordinate system): 

(a) the required spatial resolution, L,, 

(b) the length scale of the spatial variability of the total 
effective velocity, L,= U/(aU/aX), and 

(c) the length scale of the spatial variability of the decay 
law, L,. 

The following time scales can then be,defined: 

(i) the time scale of the variability of the prescribed 
concentration boundary conditions, 

(ii) the Eulerian time scale of the total effective velocity 
field, u(au/at)-l, 

(iii) the Lagrangian time scale related to the required 
spatial resolution, LJU, 

(iv) the Lagrangian time scale related to the spatial 
variability of the total effective velocity, L,/U, 

(v) the Lagrangian time scale related to the spatial 
variability of the decay law, L,/U, and 

(vi) the diffusive time scale related to required spatial 
resolution, Li (noting that the effective diffusivity in the 
transformed coordinate system is unity). 

Two examples of the relevance of time scale (iii) are as 
follows: First, if particles are injected into a current of 
velocity U, then at least one particle must be added every 
L,/U time units in order to preserve a spatial resolution of 
L,. Second, if the inter-particle spacing is appproximately 
equal to the required spatial resolution, L,, then a particle 
will be advected, by a velocity U, across an open boundary 
every L,/U time units. In each case, the addition of particles 
or the application of a boundary condition is required with 
a time scale of L&J. 

If advection in the total effective velocity field can be 
described by an analytic solution, then the time scale (iv) is 
no longer a restriction. Alternatively, the effect of (iv) may 
be partially removed by defining variables, such as the dif- 
fusivity, as analytic functions within limited regions (e.g., in 
a piecewise linear fashion), such that analytic solutions exist 
for the particle trajectories in each region. It is common to 
employ a constant decay law, in which case the time scale 
(v) becomes infinite, therefore presenting no constraint. The 
time scale (vi) relates mainly to the time between boundary 
collisions caused by diffusion, requiring the application of 
some boundary condition (e.g., reflection). 

The choice of time step is hence dominated by the time 
scales of the forcing of the system by the boundary condi- 
tions (i) and the velocity field (ii), and by time scales defined 
by the required spatial resolution (iii) and (vi). The 
constraints afforded by the spatial variabilities of the total 
effective velocity (iv) and of the decay law (v) may often be 
overcome. 

The power of the transformation of Section 4, combined 
with the use of a normal distribution for step generation, 
may be illustrated by the following example. Consider a 
patch of substance released instantaneously into spatially 



376 HUNTER, CRAIG, AND PHILLIPS 

varying, but steady, fields of velocity and diffusivity. The 
boundaries are far from the patch and hence do not 
influence its spreading. The decay law is spatially constant 
and advection may be simulated by an analytic solution. In 
this simplistic, but not unreasonable, example none of the 
time scales (i) to (vi) limit the model time step; the model 
can employ an arbitrarily long single time step to predict 
exactly (subject to stochastic variations) the concentration 
field at any time in the future. 

The choice of number of particles is closely related to the 
spread of simulated concentrations given by Eq. (33), which 
may be recast in terms of the proportional error for cell i, 

~=(~(t-l))l”~(~l~N)-l/~, (38) 

where cliN is the expected number of particles in cell i and 
cli are a set of (small) dimensionless constants that may 
be estimated in retrospect, or from prior approximate 
solutions to the problem in hand. Such solutions may be 
obtained from a simplified “back-of-the-envelope” model. 
Once the maximum allowable value of si/(ci) (for any cell) 
is chosen, the minimum value of N, the total number of 
particles, may be chosen from Eq. (38). 

8. CONCLUSIONS 

In random walk models where the diffusivity varies 
spatially, the naive method (employing only a random 
step with a spatially variable variance, equivalent to the 
value of N, given by Eq. (1 )), yields incorrect simulations 
(Section 3). The error is equivalent to the omission of an 
apparent advection velocity, in the direction of increasing 
diffusivity and of magnitude equal to the diffusivity 
gradient. The problem may be rectified in one of two ways, 
either by the addition of this apparent velocity or through 
the use of a spatial transformation that yields a constant dif- 
fusivity (and another apparent velocity) in the transformed 
coordinates (Section 4). 

With the former method, the first and higher moments 
are modified by the finite diffusivity gradient (see, for exam- 
ple, Eq. (12)). The modification of the first moment is 
simply equivalent to the presence of the apparent advection 
velocity. Neglect of errors in the third, and higher, moments 
is only justified by recourse to the central limit theorem, 
which has been shown to involve’a penalty in temporal 
resolution (Section 5). 

The latter method, however, involves no approximation; 
further, it is applicable to any diffusivity field, provided 
that the reciprocal of the square root of the diffusivity is 
integrable (Eq. (24)) and that the diffusivity varies in only 
one direction. It is therefore the preferred method for the 
modelling of boundary layers. 

In the case of a constant diffusvity (or the use of the trans- 

formation of Section 4), the normal distribution is the 
preferred distribution from which to choose the random 
steps (Section 5). The large number of model steps involved 
in a single simulation will frequently exceed the full cycle of 
a particular random number generator, in extreme cases 
leading to negligible diffusion. The random number gener- 
ator should therefore be tested over a large number of 
diffusive steps, in the simple manner described in Section 6. 

Two important aspects of model design are the selection 
criteria for the time step and the total number of particles 
(Section 7). The choice of time step is often dominated by 
the time scales of the forcing of the system and by the 
required spatial resolution. The proportional error of the 
predicted concentration is given by the square root of 
the inverse of the expected number of particles in a model 
cell (Eq. (38)). A “back-of-the-envelope” forecast, or a 
retrospective check, will indicate whether the number of 
particles is sufficient to achieve the required accuracy. 
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